2,125 research outputs found

    Dynamics and phase evolution of Bose-Einstein condensates in one-dimensional optical lattices

    Full text link
    We report experimental results on the dynamics and phase evolution of Bose-Einstein condensates in 1D optical lattices. The dynamical behaviour is studied by adiabatically loading the condensate into the lattice and subsequently switching off the magnetic trap. In this case, the condensate is free to expand inside the periodic structure of the optical lattice. The phase evolution of the condensate, on the other hand, can be studied by non-adiabatically switching on the periodic potential. We observe decays and revivals of the interference pattern after a time-of-flight.Comment: 6 pages, 5 figures; submitted to the Proceedings of the 11th Laser Physics Workshop, Bratislava 200

    Nonlinear effects for Bose Einstein condensates in optical lattices

    Full text link
    We present our experimental investigations on the subject of dynamical nonlinearity-induced instabilities and of nonlinear Landau-Zener tunneling between two energy bands in a Rubidium Bose-Einstein condensate in an accelerated periodic potential. These two effects may be considered two different regimes (for small and large acceleration) of the same physical system and studied with the same experimental protocol. Nonlinearity introduces an asymmetry in Landau-Zener tunneling; as a result, tunneling from the ground state to the excited state is enhanced whereas in the opposite direction it is suppressed. When the acceleration is lowered, the condensate exhibits an unstable behaviour due to nonlinearity. We also carried out a full numerical simulation of both regimes integrating the full Gross-Pitaevskii equation; for the Landau-Zener effect we also used a simple two-level model. In both cases we found good agreement with the experimental results.Comment: 9 pages, 7 figures. Submitted to Laser Physic

    Expansion of matter waves in static and driven periodic potentials

    Get PDF
    We study the non-equilibrium dynamics of cold atoms held in an optical lattice potential. The expansion of an initially confined atom cloud occurs in two phases: an initial quadratic expansion followed by a ballistic behaviour at long times. Accounting for this gives a good description of recent experimental results, and provides a robust method to extract the effective intersite tunneling from time-of-flight measurements.Comment: 4 pages, 3 eps figure

    Shear design of HSC beams with combination of links and horizontal web steel

    Get PDF
    The existing recommendations in Eurocode 2 and the British Code of Practice for the shear design of beams are derived from research conducted essentially on normal-strength concrete (NSC) with cube strengths up to 50 MPa, and it was found that the shear strengths of high-strength concrete (HSC) members made with limestone aggregate are below the characteristic resistances of identical NSC members. Previous experimental tests have also shown that significant differences exist in the angle of crack of shear failure of NSC and HSC. This paper presents data from five beam tests, which demonstrate that HSC with limestone aggregate has a reduced shear strength compared with NSC made with gravel and thus shows a gap in knowledge in the design approach to shear resistance of HSC beams. Previous investigations have suggested that horizontal web steels can contribute to the overall shear resistance of a reinforced concrete member in conjunction with the other constituents, concrete, tension and shear steel. The paper also presents data from tests on 11 beam tests and shows that the shear resistance of HSC beams is highly dependent on dowel action resulting from horizontal web bars positioned at the centre of the depth of the beam. Past attempts to quantify this dowel action are investigated and an improved design rule is proposed

    Instabilities of a Bose-Einstein condensate in a periodic potential: an experimental investigation

    Full text link
    By accelerating a Bose-Einstein condensate in a controlled way across the edge of the Brillouin zone of a 1D optical lattice, we investigate the stability of the condensate in the vicinity of the zone edge. Through an analysis of the visibility of the interference pattern after a time-of-flight and the widths of the interference peaks, we characterize the onset of instability as the acceleration of the lattice is decreased. We briefly discuss the significance of our results with respect to recent theoretical work.Comment: 7 pages, 3 figures; submitted to Optics Express (Focus Issue on Cold Atomic Gases in Optical Lattices

    Observation of St\"{u}ckelberg oscillations in accelerated optical lattices

    Full text link
    We report the experimental observation of St\"{u}ckelberg oscillations of matter waves in optical lattices. Extending previous work on Landau-Zener tunneling of Bose-Einstein condensates in optical lattices, we study the effects of the accumulated phase between two successive crossings of the Brillouin zone edge. Our results agree well with a simple model for multiple Landau-Zener tunneling events taking into account the band structure of the optical lattice.Comment: 4 pages, 4 figure

    Manipulation of ultracold atomic mixtures using microwave techniques

    Full text link
    We used microwave radiation to evaporatively cool a mixture of of 133Cs and 87Rb atoms in a magnetic trap. A mixture composed of an equal number (around 10^4) of Rb and Cs atoms in their doubly polarized states at ultracold temperatures was prepared. We also used microwaves to selectively evaporate atoms in different Zeeman states.Comment: 9 pages, 6 figure

    Rydberg excitation of a Bose-Einstein condensate

    Full text link
    We have performed two-photon excitation via the 6P3/2 state to n=50-80 S or D Rydberg state in Bose-Einstein condensates of rubidium atoms. The Rydberg excitation was performed in a quartz cell, where electric fields generated by plates external to the cell created electric charges on the cell walls. Avoiding accumulation of the charges and realizing good control over the applied electric field was obtained when the fields were applied only for a short time, typically a few microseconds. Rydberg excitations of the Bose-Einstein condensates loaded into quasi one-dimensional traps and in optical lattices have been investigated. The results for condensates expanded to different sizes in the one-dimensional trap agree well with the intuitive picture of a chain of Rydberg excitations controlled by the dipole-dipole interaction. The optical lattice applied along the one-dimensional geometry produces localized, collective Rydberg excitations controlled by the nearest-neighbour blockade.Comment: 7 pages, 7 figures, Laser Physics in press. arXiv admin note: text overlap with arXiv:1103.423

    Resonantly enhanced tunneling of Bose-Einstein condensates in periodic potentials

    Full text link
    We report on measurements of resonantly enhanced tunneling of Bose-Einstein condensates loaded into an optical lattice. By controlling the initial conditions of our system we were able to observe resonant tunneling in the ground and the first two excited states of the lattice wells. We also investigated the effect of the intrinsic nonlinearity of the condensate on the tunneling resonances.Comment: accepted for publication in Phys. Rev. Letter
    • …
    corecore